ConfD EVALUATION
KICK START GUIDE

On-device mana gement framewor k for
Network Equipment Providers (NEPSs)

tailf

Table of Contents

Getting Started with ConfD ... 3
INSTAIATION oo 3
Setting up Your ENVIrONMENT ... 4
FINAING DOCUMENTATION ..iiiiie e 4
Launching @ FirsSt EXamPIE ..o 4
Watching @ Canned DeMO ... 4
ConfD Anatomy & Architecture................... 5
Management INterfaCes......ooieeee e

YANG Modeling.....cccoevueee.

Brief Transaction Theory

The Core Engine and CDB Database. ... 10
APPHCALION APIS ..o
High-Availability

SNMP Considerations...

RUNNING CONFD............coooooii s
Data-Model DefiNitioN ...
Data-Model Compilation

Rendered Management INterfaCes......ooiiieeese e 19
Configuration Data-Store, ROIDACKS ... 21
Making the Configuration Changes Happen ... 22
Operational Data ProViErS.... ..o 25
Configuration Validation

A SYSTEM EXAMPIE i
The Bigger Picture of Network Management ... 30

The Operator View
FCAPS e

Evaluation Checklist
SUMIMBTY ottt

Further INformation ..., 35

GETTING STARTED
WITH CONFD

Welcome to the world of ConfD on-device Configuration Management.

This Guide’s aim is to quickly bring you up to speed with ConfD, both on a

hands-on level as well as understanding its architectural principles and how it

fits in with the surrounding world.

Readers interested in understanding the what and why about ConfD can skip

directly to the ConfD Anatomy & Architecture chapter (page 5).

Installation

ConfD is delivered as a self-extract archive, which is OS/CPU specific, plus a number of
generic tar-archives with documentation, examples, etc. When you run the installation,
the self-extract archive will unpack both itself and the tar-archives, provided that they are
located in the same directory.

To install ConfD, just run the installer with a single argument, the directory where you
would like ConfD to be installed. The installation directory you specify must either not yet
exist, or be empty. No files will be added or modified outside the directory you specify.

$ sh confd-<VERSION>.<OS>.<ARCH>.installer.bin /path/to/confd

On a typical system, you would see something like this:

$

$ sh download/confd-X.X.linux.x86_ 64.installer.bin ~/confd-X.X

INFO Unpacked confd-X.X in /home/someuser/confd-X.X

INFO Found and unpacked corresponding DOCUMENTATION PACKAGE
INFO Found and unpacked corresponding EXAMPLE PACKAGE

INFO Generating default SSH hostkey (this may take some time)
INFO SSH hostkey generated

INFO Environment set-up generated in /home/someuser/confd-X.X/
confdrc

INFO ConfD installation script finished

Many more installation related topics (e.g. uninstall) are covered in the installation root
README file.

ConfD can be installed either
locally in your home directory, or
in a central location for multiple
users to use.

ConfD EVALUATION KICK START GUIDE

Setting up Your Environment

In addition to unpacking the installation files, the installation program will create a file
called confdrc with PATH, MANPATH and other handy environment settings for using
this installation.

Sourcing this file makes it easier to use the installed ConfD:

$ source ~/confd-X.X/confdrc
S man confd

If you are working with multiple versions of ConfD, just source the confdrc file in each
installation to switch between them.

Finding Documentation

At the root of the ConfD installation, there is a doc/ directory containing the main ConfD
User’s Guide in .pdf and .html formats. These also contain the complete set of man pages
for all the ConfD APIs. The man pages can also be read using the man command. The
Java APIs are also documented in javadoc in there.

Also at the root of the ConfD installation there is a README file with some practical hints
and pointers for hands-on users.

One of the best sources of usage information is the examples library found in the
examples.confd/ directory. It contains about 80 example applications demonstrating
the use of various ConfD APIs. Each example has a README file explaining the purpose
and usage of the example.

Apart from the man pages, extensive information about command line options can be
obtained by running the confd and confdc commands with the —-help flag.

Launching a First Example

All examples have a certain basic structure in common. At the root of each example
there is a README file explaining the purpose and how to build and run the example. All
examples have a Makefile that supports targets clean, all and start.

The biggest example in the examples library is the Quagga example. Unlike the other
examples, it is not focused on a single small use case or API. Instead it demonstrates
what a small system consisting of multiple independent applications would look like

Watching a Canned Demo

The Quagga demo is what we typically use to describe what ConfD is and does. The
README file above gives you a good quick tour of what ConfD provides. The tour of the
Quagga demo example can also be seen on-line. Navigate to www.tail-f.com, select the
ConfD product section and click the Technical Demos tab.

TORUNIT:

1. Install ConfD as described
above. Here we assume ConfD
was installed in the directory ~/
confd-X.X/

2. Type . ~/confd-X.X/confdrc
— this sources the confdrc file to
set up the PATH etc

3. Type cd ~/confd-X.X/
examples.confd/demo/
quagga

4. Type make clean all —
this builds the Quagga demo
applications

5. Type make start —this starts
ConfD and the Quagga demo
applications

6. Direct your web browser to the
URL https://localhost:8888

7. In your web browser, log in as
admin / admin

8. Then follow the guided tour by
looking at the instructions in the
~/confd-X.X/examples.
confd/demo/quagga/README
file

ConfD EVALUATION KICK START GUIDE

ConfD Anatomy & Structure

ConfD is an on-device management framework. Its main purpose is to enable device
manufacturers to quickly provide end user operators and higher-level management
systems a set of rich, high-quality interfaces to manage the device.

NCS

S—— EMS/OSS
0x)

Network Element

l l l l ! :
!

YANG Data

Model

Auto-rendered management interfaces and data store schema

_ confbCore Engine I
!

!

:

!

Data Provider API !

n VN VN VN VN VN :
Database) '

2 2 '

@ = 1

£ =1 1

= o 1

Managed Object API e O '
['

o~ VN VN o :

| VO] MO | VO N |] | I E

Figure 1: ConfD block diagram

At the top of the diagram, on top of ConfD, the block labeled EMS/OSS and the terminal
icon represents higher-level management systems end user operators. They are the
consumers of the management interfaces presented by the device through ConfD.

Moving inside the ConfD block, the top layer is the ConfD management interfaces.
NETCONF, SNMP and REST are popular machine-to-machine device management
protocols. Command Line Interface (CLI) and Web User Interface (Web Ul) are well
suited for human operators. The “Other” block represents the possibility to add other
management interfaces beside the ones provided by some programming.

These management interfaces are often said to be “northbound”, since they are facing
upwards on the picture. The device developer can choose which of the management
interfaces to include and expose in his device.

In the middle there is the ConfD Core Engine. This block represents the heart and the
majority of the code in the ConfD framework. Find more details around the functionality in
“The Core Engine and CDB Database” section.

Looking “southbound”, i.e. at the bottom of the diagram, you find the application
interfaces. MO stands for Managed Object, a very old standard term for the applications
being managed.

ConfD EVALUATION KICK START GUIDE

Management Interfaces

The ConfD framework is Model Driven. This means that ConfD automatically renders all
the management interfaces from a data-model. A default rendering of each interface is
produced automatically without any programming at all, solely based on the model. If this
model is updated, that is automatically reflected in all management interfaces. The “YANG
Modeling” section discusses this in some more depth.

Another key concept with ConfD is the support for Transactions. Most of the northbound Traditionally, it has been

interfaces provide transaction-safe configuration changes. This greatly simplifies the common to have a separate
operator’s use of the device. The value and meaning of transactions is discussed in the ‘stove-pipe” (isolated silo) for
“Brief Transaction Theory” section. each management interface,

with different structure and
functionality. This is not so with

ConfD allows any number of management systems and operators to be logged-in and ConfD

make configuration changes, show status, invoke management actions, etc. at the same
time. They may use any mix of the management interfaces in parallel.

Here is a brief presentation of the available human user interfaces:

Cisco 10S style CLI: This CLI style is similar to the CLI found on classic devices
like Cisco 7200 and many others. This CLI is not transactional, which means each
command takes effect immediately as the operator hits ENTER.

Cisco 10S XR style CLI: This CLI style is similar to the CLI found on Cisco’s high-
end equipment, like ASR9k and CRS-1. This CLI is transactional, which means the
operator can make a lot of configuration changes, and then activate them with the
commit command.

Juniper style CLI: This CLlI is similar to the one found on all Juniper’s equipment
and many others. This CLlI is transactional. It is often considered to be the CLI style
easiest to use.

Web Ul: This is a rich client “Web 2.0” style user interface, directly rendered from
the data-model. There is also a Web Ul development framework to enrich and
customize the auto-rendered user interface with additional functionality or altered
behavior, if desired. The WebUl is rendered inside the browser client allowing for
dynamic model-changes. Runs in an embedded Web server over http and/or https.

The CLI rendering engine is one of the strong points of ConfD. Using just the YANG data-
model as input, ConfD renders CLI interfaces that are endorsed by network engineers.
Using special YANG annotations in the models, the developer can give extra directions
to the renderer on the desired behavior or certain command or mode. All the CLI variants
support rich command editing with tab-completion, history, hints and help.

Now, let’s look at a brief presentation of the available machine-to-machine interfaces:

« SNMP: This is the most popular network management protocol for monitoring and
fault handling. The ConfD SNMP agent supports SNMPv1, SNMPv2c, and SNMPV3.
SNMP is not transactional, but ConfD treats each PDU as a transaction.

- REST: Thisis a popular design pattern for scripting towards a device. It provides
a resource-based interface using the HTTP verbs and content in XML or JSON to
modify resources. REST is not transactional, but ConfD treats each REST message
as a transaction.

ConfD EVALUATION KICK START GUIDE

« NETCONF: This is the most powerful management protocol supported by
ConfD and very popular in Software Defined Networking (SDN) contexts. ConfD
implements the full NETCONF specification including all optional parts, including
support for network-wide transactions, multiple data stores and XPATH queries. It
runs over SSH with content encoded in XML.

YANG Modeling

The first thing a developer would do when starting to develop the management
interfaces for devices using ConfD would be to create a YANG Data Model.

As soon as a YANG model with the above information has been created, it can be
compiled and loaded into ConfD. ConfD will then automatically render all of the
described elements in all the management interfaces.

Say your device has a set of interfaces. Each interface has a number of properties that
can be configured and monitored, as well as actions that can be executed.

All of these things would be modeled in YANG. The model might say there is a list of
interfaces. The interfaces are identified by name. The name is an alphanumeric string
of at most 20 characters, not starting with a number. Each interface has a configurable
desired port speed, selectable from some set of possible values, one of which is “auto”.

An interface also has several status a.k.a. operational properties. These properties can
be observed, but not directly set by the operator. One is the actual port speed; a couple
of others include byte counters for ingress and egress traffic.

There would also be an action to reset all the interface byte counters to zero.

An actual YANG model according to the above could look like this:

list interface {
key name;
leaf name {
type string {
length 1..20;
pattern “[a-zA-Z][0-%a-zA-Z :/-1+";

}
leaf port-speed {
type enumeration {
enum 100M;
enum 1G;
enum 10G;
enum auto;

}
container status {
config false;
leaf actual-speed {
type uinté4;
units “bits/s”;
}

leaf ingress-bytes {

The YANG Data Model describes:

« Everything that can be
configured on the device

- Everything that can be
monitored on the device

- All the administrative actions
that can be executed on the
device

- All the notifications the device
may generate

ConfD EVALUATION KICK START GUIDE

type uinté64;

}

leaf egress-bytes {
type uinté64;

}

}

rpc reset-interface-counters;

Figure 2: Example YANG model

Based on a YANG model like this, ConfD would render a Cisco |IOS and 10S XR style CLI
with commands to set, no & show the configuration properties, show the operational
properties and a command to execute the action. In the Juniper CLI there would be
commands to set, delete, edit and show all the objects, etc.

ConfD would also render a Web Ul with table view of the interfaces, entry fields or drop
downs for the configuration properties, current values for the operational properties
and a push button to execute the action. ConfD would also render an SNMP interface
(including a MIB), a REST interface and a NETCONF interface to all this. No programming
would be required to get any of this.

The YANG modeling language is a standard defined by IETF in the document RFC 6020.
IETF is the same organization that defined SNMP, SMI and the standard MIBs many years
ago.

One key aspect of YANG is the clear separation of configuration and operational data.
Separating them makes it easy for an operator to retrieve only the configuration data of
a device, and restore it at a later date, or modify it slightly and apply it to another similar
device.

SNMP is not designed this way, which is one of several reasons SNMP is rarely used for
configuration.

YANG modeling is an art, and models can be designed in many ways. It is possible to
construct YANG models that mimic an existing behavior, e.g. a legacy CLI, very closely. In
general, however, a more versatile and long lasting device management interface results
if the YANG model is designed in a more generic fashion.

Brief Transaction Theory

A transaction is a set of actions that fulfills the following four properties, collectively
referred to as the ACID properties:

« Atomicity: A transaction is always carried out completely or not at all. This
principle is widely known.

« Consistency: Transactions are instantaneous, i.e. the actions within a transaction
are all logically happening at the same time. Transaction T1 containing actions A
and B is identical to transaction T2 containing actions B and A. The transaction
manager must treat T1 and T2 exactly the same, or else it does not fulfill the ACID
properties, i.e. the system does not support transactions.

The YANG modeling language is
a standard defined by IETF in the
document RFC 6020. IETF is the
same organization that defined
SNMP, SMI and the standard MIBs
many years ago.

ConfD EVALUATION KICK START GUIDE

- Independence: All transactions executed by a transaction manager must be
executed in sequence, one at a time. Or so it must appear to all observers.

« Durability: Once a transaction has been completed, it must stick, regardless of
power failures or other incidents in scope of the transaction manager specification.

IETF investigated what the operator requirements are on Network Management back in
2001-2002, and wrote a nice informational RFC document about their findings. It is still
very relevant today. With its less than 20 pages, high-level, well written outlook, it’'s an
excellent summary: http://tools.ietf.org/html/rfc3535

In this document, operators say that transactions and network-wide transactions are a
key mechanism to automate the network management, i.e. transactions within a single
device, and even better that cover more than one device.

Without transactions, operators and Network Management Systems (NMS) would have
to “know” in which sequence all configuration changes should be sent to the devices in
the network. With the introduction of transactions, this sequencing information no longer
comes from the operators or NMS systems. A transaction is all-at-once, so there is no
internal sequence in a transaction. Applications inside the device, however, depend
heavily on receiving configuration change events in a particular order. So, in ConfD,
applications specify in which order they would like to receive configuration change
notifications, regardless of how the operator or NMS gave it to the system.

An application always wants to know about any interface creations or modifications first,
then any routing changes over those interfaces, and finally any interface deletions would
specify that in its database subscription calls. ConfD would then deliver this information in
that sequence, regardless of how it was given by the NMS or operator.

Without transactions, operators and NMS systems would also have to undo everything
they did so far if some big change failed half way through. This is complicated, expensive,
error prone and very difficult to test. With transactions, this error handling code is not
needed in the NMS, leading to great savings.

For example, when an NMS was setting up an L3VPN, say, for some client across a
network of routers, firewalls and deep packet inspection devices from six vendors, if
something went wrong, the application would have to “know” how to abort the change
and undo all that was done to the failing device. It would also have to revert all the
changes already successfully made to the devices prior to the failure.

With the introduction of transactions, all these burdens on the NMS go away. In a typical,
mature NMS application, that would be more than 50% of the code. No wonder operators
are requiring that network equipment support network wide transactions.

A somewhat similar situation was noted in the database industry in the 1980’s. Then
the transaction concept was widely adopted there, and the industry transformed
permanently.

In this document, operators
say that transactions and
network-wide transactions
are a key mechanism to
automate the network
management, i.e. transactions
within a single device, and
even better that cover more
than one device.

ConfD EVALUATION KICK START GUIDE

The Core Engine and CDB Database

The ConfD Core Engine is what we call the collection of all the main subsystems
in ConfD. Around 80% of the ConfD code, functionality and features are here. The
management protocol agents are relatively thin layers on top of the ConfD Core Engine.

The main subsystems are the Transaction manager, the Data Model manager, the Access
Control manager, the Logging subsystem, The High Availability subsystem, the Rollback
generator, and the CDB Database.

The Data Model manager keeps track of all the YANG data models, and the tree of
managed objects they jointly describe. For each part of the model, it keeps track of
which application or system component is the responsible data provider for this part of
the model. This is similar to how UNIX file systems are mounted within each other and
responsible for one or several sub-trees.

(A
YANG model
to application ——W v v
mappings
CDB Proyidgr CDB
S o Configuration Application

Operational
Provider
Application
Feeder
Subscriber Subscriber Application
Application Application

Figure 3: YANG models describing both configuration and status information are mounted at the root and

on top of each other. Every list and leaf in the models are mapped to a provider, either a database such

as CDB, or provider applications. Subscriber applications are notified of changes to relevant parts of the
configuration. Feeder applications inject operational data, e.g. performance data into the CDB operational
data store.

For configuration data, some sort of database would be the data provider. In most cases,
the built-in CDB Database is used, but other databases could be plugged-in, or even
some simple storage in flat files could be built.

For operational data, i.e. status information, the applications themselves register as data
providers most of the time. There is usually no point in storing this kind of potentially
rapidly changing data in a database. The values are simply computed when an operator
wants to see them. For certain types of operational data, e.g. performance and alarm
data, it may make sense to store this in a database. The CDB Database has a separate
Operational Datastore available for this purpose, should you wish to use it.

The Data Model manager uses special YANG model annotations to know which
application or system component is responsible for each part of the data model.

ConfD EVALUATION KICK START GUIDE

The CDB Database is a transactional, ACID compliant database where the schema is
composed of the YANG models. CDB picks up any changes to the model automatically
and translates any existing contents in the database to the new schema.

CDB is a no-SQL hierarchical database. This makes it easy to represent the configuration
data for the device, which is hierarchical in nature. This avoids the object-relational-
mapping problem from hierarchical data to say SQL tables. CDB is built around ACID
transactions, so any configuration change either happens completely or nothing is
changed in the data store.

The key features of CDB are:

- Persistent embedded in-memory database with optimized performance for
hierarchical data. The in-memory model makes all validation, CLI tab-completion
etc. execute quickly. The CDB journals are stored to disk.

- Automatic schema management: the embedded data store removes all
traditional work around databases. CDB uses YANG as native schema language,
so the schema management is transparent. Nor is there any need for run-time
configuration or administration of the database.

« Schema upgrade/downgrade: the schema (YANG model) can be changed in run-
time. CDB will automatically manage migrating the existing stored data. In case of
conflicting schema and instance data, upgrade hooks can be registered.

- Transactions: the data store and the ConfD transaction engine are tightly
connected. This removes the burden from application developers to understand
and implement transactional integrity.

« Subscription-based programming model: programmers can subscribe to changes
to CDB and react upon those. This in contrast to stub-based approaches. It also
enables easy addition of logic.

- High-availability: CDB can run in high-availability mode, where hot-standby nodes
are replicated from the master node.

- Support for candidate and running data stores

- Fast and light-weight: CDB is optimized for embedded applications, the foot-print
is small and response times are quick.

The ConfD Core Engine also manages AAA, i.e. Authentication, Authorization and
Accounting/Auditing. The list of users and their passwords or cryptographic tokens can
be kept in the CDB database, in the underlaying operating system, e.g. PAM, in remote
Radius/Tacacs+/LDAP etc servers or a combination of this. Fine- or coarse-grained
access control rules can be defined per group/role and users can be assigned to roles/
groups.

Logging can be set up to create detailed audit logs, or system level or application tracing.
The information may be logged to local files, remote syslog or custom applications.

Logging can be setup to
create detailed audit logs, or
system level or application
tracing. The information may
be logged to local files, remote
syslog or custom applications.

ConfD EVALUATION KICK START GUIDE

Application APIs

Applications a.k.a. managed objects running south of ConfD typically don’t know or care
which management interface a particular operator request is coming from. All they see is
a request from ConfD to get some value, or a transaction with changes, which should be
validated or committed.

The model-driven nature of ConfD is illustrated below. You write a data-model for your
device, load that to ConfD and you have an agent with all northbound API, persistent
configuration data store and all other features of the core engine.

Za¥ EMS /0SS ;l
0K

i —

ConfD

Customer
Applications

Figure 4: The ConfD Core Engine in the middle, with the Management Agent APl (MAAPI)
on top and CDBAPI and Data Provider APl (DPAPI) below.

There are three main APIs in ConfD:

- MAAPI: Management Agent API. With this APl applications can start transactions,
read and write configuration data, read operational status data or invoke actions
the same way as an operator could. In fact, this is the API that the management
agents use in their implementation.

- DP API: Data Provider API. With this APl applications register for callbacks for
various kinds of events, e.g. when an operator is asking to see the current value of
some operational data value, e.g. the CPU temperature.

- CDB API: Database API. With this APl applications read configuration data from
the database and subscribe to configuration changes. Applications may also write
operational data into the operational data store in CDB.

There is a wealth of different kinds of application that might be running inside a ConfD
based system. How they are divided into different executables and potentially spread
out over a set of nodes in a cluster is up to the software designer. They could all run in
a single executable, or run in a large number of separate processes across a wide area
network. Here’s a menu of the most common application types:

ConfD EVALUATION KICK START GUIDE

« Subscriber: An application using the CDBAPI that has requested to be notified
when an operator modifies parts of the configuration that the application is
interested in, e.g. set hostname or add an entry to the interface table.

- Data Provider: An application that knows the current value of something in the
data model. ConfD will contact this application through the DPAPI to get the current
value when requested by an operator, e.g. show CPU temperature.

- Action Provider: An application that implements an action listed in the data model.
ConfD will contact this application through the DPAPI when the operator executes
the action, e.g. reset interface byte counters.

- Validator: An application that participates in the validation, i.e. determining if the
configuration that results when applying a certain transaction is valid. A validator
can respond “Yes, this is fine”, “No, this configuration is invalid because ...” or
“Warning: This configuration is valid, but are you aware that ... (proceed/abort)

?” Validators use the MAAPI since they need to see the upcoming configuration
the same way an operator sees it, not the configuration currently stored in the
database.

« Transaction hook and set hook: An application that is invoked when an operator
wants to commit a transaction, before the validation starts (transaction hook), or
each time the operator sets a value in a transaction (set hook). The application
can then modify or extend the transaction with further modifications on behalf
of the operator. These modifications are usually done in parts of the data model
that are invisible to the operator. Hooks use the MAAPI since they are modifying
transactions on behalf of the operator.

- Data feeder: An application that is repeatedly storing operational data, e.g.
performance readings, into a database table using the CDBAPI.

« Two-phase subscriber: A subscriber application that is also participating in the
validation phase using the CDBAPI. It can thereby reject upcoming configuration
changes.

- Transform: An application that translates an externally visible data model into an
internal data model. This is useful for example when an application that uses an
SNMP MIB like APl internally needs to be dressed up in a user-friendlier Cisco-like
CLI command tree. Transforms use both the DPAPI and MAAPI.

« Authentication and authorization callback: Application that participates in the
authentication or authorization of operators in the system. They use the system
APIs, not listed as one of the main APIs above.

« Upgrade client: An application that participates in a software upgrade campaign
to update the data stored in CDB beyond the automatic conversion.

« Policy, Command and Post-commit script: Scripts to enforce policies or perform
additional actions at commit time or when specific commands are executed.

« Completion plug in: An application that alters the standard TAB-completion
behavior in the Command Line Interfaces.

« User Type plug in: An application that implements an additional base type that
can be used in the YANG models.

ConfD EVALUATION KICK START GUIDE

- Message formatters: An application that reformats or translates operator
messages, e.g. error messages.

« Inter-process communications plug in: An application to replace the default IPC
mechanism (TCP sockets) used between ConfD and clients. Useful if clients need
to use for example UNIX-domain sockets or TIPC to reach ConfD.

- Alarm manager: An application that receives events from many applications
in the system, and decides which alarm states should be raised and cleared in
the system, and how those alarm states should be communicated to operators
and management systems. E.g. do nothing, send an SNMP notification, SNMP
notification plus NETCONF notification plus message to all operators, etc.

Beyond this list, there are often customizations and extensions to the way the CLI and
WebUI behave.

Many management agent frameworks are stub-based. This means that a command
list or data-model is fed to a compiler, which generates stub functions that must be
implemented, “instrumentation”. The instrumentation code must handle all application
logic like persistence, error-handling, mapping to the underlying resources etc.

ConfD turns this upside-down. ConfD is a complete agent and uses a subscription-
based programming style, based on the YANG data-model. Northbound APIs and

User Interfaces are run-time rendered. Configuration changes are made persistent

into the built-in data store. As a developer you can iteratively add subscriptions to the
configuration changes and map this to the underlying resources. This has several benefits
including iterative/agile development and core features taken care of by the ConfD Core
Engine. The developer can focus on the application logic.

'd N\ 'd N\
Application Blades —
. ™
. The most common run-time
: deployment of ConfD is a
scenario distributed over
a management blade and
several application blades:
(. J
L J
Management Blade L
. J J

: : Unix/Linux process IPC (Sockets)

Figure 5: Management and Application Blades

The application blades link with the ConfD API library 1ibconfd and the communication
is handled over sockets to the ConfD agent.

The APIs come with different language bindings:

. C
. Java
- FErlang

« Python (Currently MAAPI only)

ConfD EVALUATION KICK START GUIDE

High-Availability

ConfD supports replication of the CDB configuration and some or all CDB operational ConfD does not take any
data. The replication architecture is that of one active master and a number of decisions regarding which
slaves. All configuration write operations must occur at the master and ConfD will node is slave or master.

automatically distribute the configuration updates to the set of live slaves, synchronously It relies on an external

or asynchronously. Operational data in CDB may be replicated or not based on the framework calling functions:
tailf:persistent statement in the data model and the ConfD configuration. All write
operations for replicated operational data must occur at the master, with the updates
distributed to the live slaves, whereas non-replicated operational data can also be written
on the slaves.

be master()

be slave()

SNMP Considerations

Even though SNMP is not used very often for configuration and provisioning purposes, it
is the dominating protocol for network monitoring and fault management. For many device
types, an SNMP agent implementation is a hard requirement.

ConfD has a built-in SNMP Agent with full support for any combination of SNMPV1,
SNMPv2c, and SNMPVv3 including the framework MIBs, authentication and encryption.

In the same manner as for all other northbound APIs, SNMP is not a separate stove-pipe/
silo. It is a view of the data-model managed by ConfD. ConfD supports tools that can
render YANG modules from MIBs and vice versa.

There might be different starting points when it comes to SNMP:
1. There are standard or proprietary MIBs that must be supported

2. There are YANG modules that must be supported, we just need a MIB representation
for this information

3. Or a mix of above

Scenario 1: MIBs are given

The YANG modules and associations are generated with the confdc --mib2yang
translator program. The generated YANG modules will in this case resemble the original
MIBs in terms of structure, naming and level of details.

You may want to take a look at the examples.confd/snmpa/2-mib-to-yang for a
deeper dive.

Scenario 2: YANG modules are given

A YANG module may be translated into a MIB using the confdc --emit-mib command.
The generated MIB will use the same names as the YANG module, but the deep structure
with tables inside tables common in YANG will be translated to flat tables on the top level
(as required in SNMP) with foreign keys etc. added. The YANG module may be annotated
with SNMP names and OID values, in which case those names and OIDs will be used in
SNMP.

Scenario 3: YANG and MIBs are given

In this case, MIB associations should be written to bind MIB objects to the nodes in the
YANG data model. YANG annotations statements tailf:snmp-name, tailf:snmp-
oid, etc. are added either directly in the YANG module or in a separate annotation file. In
many cases the mapping can be more complex than can be expressed by annotations. In
such cases a transform application is required in order to implement the translation.

ConfD EVALUATION KICK START GUIDE

Running ConfD

Let’s walk through one of the examples in the ConfD examples collection.

You will find this example in examples.confd/intro/1-2-3-start-query-model.
This example implements the simplest possible subscriber. At startup it reads out the
dhcp-related configuration and writes the Linux dhcpd config file. Then it subscribes to
configuration changes in the dhcp-area of the YANG model, and whenever an operator
makes any changes here, ConfD notifies the subscriber. The subscriber reads all the
dhcp related configuration and regenerates the entire dhcpd config file again. A very
basic approach to configuration subscriptions.

Data-Model Definition

The first step with ConfD is always to write a data model that specifies the configuration
and operational data. Let’s look at the DHCP YANG data-model step-by-step.

All YANG modules define module related meta-data:

module dhcpd {
namespace “http://tail-f.com/ns/example/dhcpd”;
prefix dhcpd;

import ietf-inet-types {
prefix inet;

}

import tailf-xsd-types {
prefix xs;

}

typedef loglevel {
type enumeration {
enum kern;
enum mail;
enum local’;

Figure 6: DHCP YANG Module, snippet #1

This snippet gives a name to the module along with a unique namespace. Useful data
types from IETF and Tail-f are imported and finally a typedef for loglevels is defined.

Next we have the core part of the data-model:

container dhcp {

leaf default-lease-time {
type xs:duration;
default PT600S;

}

leaf max-lease-time {
type xs:duration;
default PT7200S;

ConfD EVALUATION KICK START GUIDE

leaf log-facility {
type loglevel;
default local’;
}
container subnets {
uses subnet;
}
container shared-networks {
list shared-network ({
key name;
max-elements 1024;
leaf name {
type string;
}
container subnets {
uses subnet;

Figure 7: DHCP YANG Module, snippet #2

The data-model defines configurable attributes for default lease time, max lease time and log
facility. The subNets container uses the subNet definition. You can think of this as a macro
expansion. The definition will be shown next. Finally the data-model defines a list of shared-
networks. Again, note the uses construct of the subNet grouping.

Finally we can study the definition of the “subNet” grouping:

grouping subnet {
list subnet {
key “net mask”;
leaf net {
type inet:ipv4-address;
}
leaf mask {
type inet:ipv4-address;
}
container range {
presence “Enable specific range for subnet”;
leaf dynamic-bootp {
type boolean;
default false;
description “Enable BOOTP for this subnet”;
}
leaf low-addr {
type inet:ipv4-address;
mandatory true;
description “Lowest address in range’;
}
leaf hi-addr {
type inet:ipv4-address;

ConfD EVALUATION KICK START GUIDE

leaf routers {
type string;

}

leaf max-lease-time {
type xs:duration;
default PT7200S;

description “Highest address in range”;

Figure 8: DHCP YANG Module Snippet #3

It defines a list of subnets, keyed with address and mask. Each subnet BOOTP can be

configured as true or false.

Since YANG is an open standard with a canonical textual representation (defined in
RFC6020) it can be authored in any editor like Vi, Emacs or Eclipse, etc. guided with

modes or plug-ins.

There are also visual editors available. An example from MG-SOFT is given below:

Figure 9: YANG Visual Editor

800 MG-SOFT Visual YANG Designer
el mE s F" Q/EE:E‘
YT
v dh —_——
0¥ © dhepd List name: shared-network S
1 & namespace Filter: X
i . preflx Vi Config ™ Context sensitive
import
" » Data Structure
5 B Smpon Key: name 2 Cho
7 » @loglevel r(mcg
12 ¥ ;% subnet Mo : . 5 ;\ Cnmanrler
13 v B subnet in-elements: <not-set> ¥¢ Grouping
14 @ key @ Leaf
15 > B net Max-elements: |1024 B Leaf-list
B List
7 > Bms -]
19 » [range Ordered-by: <not-set> 27 Uses
32 » @ routers » Type Specific
34 » & max-lease-time hen; SHOLSSRE> @ Typedef
37 ¥ [dhep » Extending
38 » @ default-lease-time Status: <not-set> o Extended-statement
41 » @ max-lease-time » Rpc/Notification
44 » @ log-facility @ Ayl
47 v [subnets » Module Modifiers
48 7 uses subnet i
49 v [] shared-networks m Log = Errors |
50 Ml shared-network list shared-network {
51 & key key name;
52 & max-elements max-elements 1024;
53 » B name leaf name {
111 » [subnets e
)
container subnets {
)
}

Since YANG is an open
standard with a canonica
textual representation
(defined in RFC6020) it can
be authored in any editor
like Vi, Emacs or Eclipse,
etc. guided with modes or
plug-ins.

ConfD EVALUATION KICK START GUIDE

The good thing about textual modeling languages is that it leaves room for any tools to
be built. A useful open source tool is pyang', which can do lots of things based on YANG
input. One of the most useful is rendering a tree structure:

module: dhcpd

+--rw dhcp
+--rw default-lease-time? xs:duration
+--rw max-lease-time? xs:duration
+--rw log-facility? loglevel

+--rw subnets
+—--rw subnet* [net mask]

|

| +--rw net inet:ipv4-address

| +--rw mask inet:ipvé4-address

| +--rw range!

| | +--rw dynamic-bootp? boolean

| | +--rw low-addr inet:ipvé4-address
| | +--rw hi-addr? inet:ipvé4-address
| +--rw routers? string

| +--rw max-lease-time? xs:duration

+--rw shared-networks
+--rw shared-network* [name]
+--rw name string
+--rw subnets
+--rw subnet* [net mask]

+--rw net inet:ipv4-address
+--rw mask inet:ipvé4-address
+--rw range!

| +--rw dynamic-bootp? boolean

| +--rw low-addr inet:ipvé4-address
| +--rw hi-addr? inet:ipvé4-address
+--rw routers? string

+--rw max-lease-time? xs:duration

Figure 10: pyang output

'SNMP Geeks: this is similar to smilint/smidump.

ConfD EVALUATION KICK START GUIDE

Data-Model Compilation

The dhcpd.yang module can now be compiled to the ConfD load format dhcpd.fxs:

$ confdc -c dhcpd.yang

ConfD reads a file called confd.conf when it starts. One of the settings is load-path —
where to look for .fxs files. All that is needed now is that the generated dhcpd.fxs file is in
the load path when starting ConfD.

So you can start ConfD:

$ confd

Rendered Management Interfaces

At this point we have all the management interfaces and persistent storage of
configuration data up and running directly generated from the data-model. The Web Ul is
shown below:

® 00 Tail-F Web User Tnterface
L] @ @ @ @ [ur¥ 127.0.0.1:8008 X o

Co nfD Save Navigate @ Rollback Lock & cu Logout

Home / Dhcp

4 Default Lease
Time... w D h o p

Default Lease Time 600s X Max Lease Time 7200s X

Default: 600s Default: 7200s

Log Facility Local 7 X L] Sub Nets

Default: local7

L] Shared Networks

Figure 11: Auto-rendered DHCP Web Ul

Starting the CLI'in IOS mode (-1 for IOS-style, -C for IOS-XR style, -J for Junos-style):

$ confd_cli -I -u admin

admin connected from 127.0.0.1 using console on wallair.local

confd> enable

confd# configure terminal

Enter configuration commands, one per line. End with CNTL/Z.

confd(config)# dhcp

Possible completions:

default-lease-time log-facility max-lease-time
shared-networks subnets

Figure 12: ConfD IOS CLI

ConfD EVALUATION KICK START GUIDE

Or REST for that matter:

$ curl http://localhost:8008/api/running/dhcp --header “Accept:
application/vnd.yang.data+json” -u admin:admin
{
“dhecp”: {
“ self”: “api/running/dhcp”,
“ path”: “/dhcpd:dhcp”,
“default-lease-time”: “PT1H”,
“subnets”: {
“ self”: “api/running/dhcp/subnets”,
“subnet”: [
{

AN}

_self”:”/api/running/dhcp/subnets/subnet/
192.168.128.0%2C255.255.255.07,

“net”: “192.168.128.0",
“mask”: “255.255.255.0"

]

}I

“shared-networks”: {
“ self”: “api/running/dhcp/shared-networks”,
“shared-network”: [

]

Figure 13: ConfD REST Example

Configuration Data-Store, Rollbacks
We will now illustrate that all configuration changes are persistent and available as roll-
backs. If we first use the Web Ul to change default lease and max lease time:

ConfD i Navigaste | | (3 Rollback Lok | | £8 cu Logout

Home / Dhep

Z Default Lease

Time w Dhcp

Options

Default Lease Time | 700s x Max Lease Time | 7400s x
Default: 600s Default: 7200s
(600s) (7300s)
Log Facility Local 7 %] SubNets

Default: local?

3 shared Networks

Figure 14: Web Ul configuring DHCP

ConfD EVALUATION KICK START GUIDE

Pressing “Save” implies a transactional commit. The rollback button gives access to all
changes to the system:

Rollback file:

B R iEss M # Created by: admin

rollback.0 admin 2013-09-30 19:44:50 webui | # Date: 2013-80-30 19:44:50
Via: webui

rollback.1 admin 2013-09-30 19:26:19 ¢l 2 Typs:fac ty

Label:
Comment:
No: 10001

dhep {
delete:
defaultLeaseTine 708s;

maxLeaseTime 7300s;
B

Figure 15: Selecting a configuration rollback

If we change it again to non-default values:

C on f D Save Navigate @ Rollback Lock & cu Logout
Home / Dhcp
4 Default Lease e
Time... D h c p
Op
Default Lease Time 700s X Max Lease Time 7400s X
Default: 600s Default: 7200s
Log Facility Local 7 4| x 3 subnNets
Default: local7
[shared Networks

Save the configuration. In order to demonstrate that these settings survive a restart of
ConfD, try stopping ConfD, and then start ConfD again and inspect the values over CLI

for example. Below we use the Juniper-style CLI:

confd> configure

Entering configuration mode private
[0k][2013-12-07 19:35:45]

[edit]

confd% show dhcp

default-lease-time 1lh;

subnets {

subnet 192.168.128.0 255.255.255.0 {
range {

low-addr 192.168.128.60;
hi-addr 192.168.128.89;

}
[0k][2013-12-07 19:35:50]

Figure 17: Showing the change in the Juniper style CLI

ConfD EVALUATION KICK START GUIDE

Making the Configurations Changes Happen

So far we have shown that ConfD renders various management interfaces and provides

persistent storage of the configuration data. A brief introduction to the core features was
also given. The most important remaining question at this point is: How do I connect this
to my application?

Going back to our DHCP example, an operator might configure the DHCP subsystem as
follows:

default-lease-time 600s;
max-lease-time 7200s;
subnet 192.168.128.0 netmask 255.255.255.0 {
range 192.168.128.60 192.168.128.98;
}
shared-network 22429 {
subnet 10.17.224.0 netmask 255.255.255.0 {
routers rtr224.example.org;
}
subnet 10.0.29.0 netmask 255.255.255.0 {
routers rtr29.example.org;

Figure 18: DHCP Configuration File

An application inside the device would then subscribe to this part of the YANG model,
and whenever there were any changes to the DHCP part of the configuration in ConfD,
regenerate a new dhcpd.conf and then restart the Linux DHCP server to make the new
configuration take effect. That is the only way to make the standard Linux DHCP daemon
read a new configuration.

int main(int argc, char **argv)
{
struct sockaddr in addr;
int subsock;
int status;
int spoint;

addr.sin addr.s addr = inet addr(“127.0.0.1");
addr.sin family = AF INET;
addr.sin port = htons(CONEFD_ PORT);

confd init(argv([0], stderr, CONFD_ TRACE);

/*
* Setup subscriptions
*/
if ((subsock = socket(PF INET, SOCK STREAM, 0)) < 0)
confd fatal(“Failed to open socket\n”);

if (cdb_connect(subsock, CDB_ SUBSCRIPTION SOCKET,
(struct sockaddr*)&addr,
sizeof (struct sockaddr in)) < 0)
confd fatal(“Failed to cdb connect() to confd \n”);

ConfD EVALUATION KICK START GUIDE

if ((status = cdb subscribe(subsock, 3, dhcpd ns,
&spoint, “/dhcp”)) != CONFD OK) {
fprintf(stderr, “Terminate: subscribe %d\n”, status);
exit(0);
}
if (cdb_ subscribe done(subsock) != CONFD_ OK)
confd fatal(“cdb subscribe done() failed”);
printf(“"Subscription point = %d\n”, spoint);
/*
* Read initial config
*/
if ((status = read conf(&addr)) != CONFD OK) {
fprintf(stderr, “Terminate: read conf %d\n”, status);
exit(0);
}
rename (“dhcpd.conf.tmp”, “dhcpd.conf”);
/* This is the place to HUP the daemon */

Figure 19: Subscribing to CDB Configuration Changes

The C-code above shows how to establish a socket to ConfD and subscribe to changes
under a specific path (/dhcp) in CDB. cdb subscribe is a call to a ConfD library
function, read conf is an application specific function shown below.

Whenever there is a change under the /dhcp path in the model we need to read the
current configuration kept in CDB (snippet shown):

static int [read conf(struct sockaddr in *addr)
{

FILE *fp;

struct confd duration dur;

int i, n, tmp;

int rsock;

if ((rsock = socket(PF_ INET, SOCK STREAM, 0)) < 0)
confd fatal(“Failed to open socket\n”);

if (cdb_ connect(rsock, CDB READ SOCKET,
(struct sockaddr*)addr,
sizeof (struct sockaddr in)) < 0)
return CONFD ERR;
if (cdb start session(rsock, CDB RUNNING) != CONFD_ OK)
return CONFD ERR;
cdb_ set namespace(rsock, dhcpd ns);

if ((fp = fopen(“dhcpd.conf.tmp”, “w”)) == NULL) {
cdb_ close(rsock);
return CONFD ERR;
}
cdb get duration(rsock, &dur, “/dhcp/default-lease-time”);

ConfD EVALUATION KICK START GUIDE

fprintf(fp, “default-lease-time %d\n”,
duration to_ secs(&dur));

cdb get duration(rsock, &dur, “/dhcp/max-lease-time”);
fprintf(fp, “max-lease-time %d\n”,
duration to_ secs(&dur));

cdb get enum value(rsock, &tmp, “/dhcp/log-facility”);
switch (tmp) {
case dhcpd kern:
fprintf(fp, “log-facility kern\n”);
break;
case dhcpd mail:
fprintf(fp, “log-facility mail\n”);
break;
case dhcpd local7:

Figure 20: Reading CDB Configuration

Note how the paths in the YANG model (see “Data-Model Definition”, page 16) are Instrumentation for
referenced above. configuration data is

implemented by subscribing
So, the instrumentation for configuration data is implemented by subscribing to to specific paths in the

data-model and makes the
change happen. This loosely
coupled programming model
makes it very easy to work
with configuration data.

specific paths in the data-model and makes the change happen. This loosely coupled
programming model makes it very easy to work with configuration data. Note how ConfD
seamlessly handles tricky things like:

« Persistence
. Tranactions
. Roll-backs

No user code is needed for that.

This was a simple example that reads all relevant configuration every time anything
changes. Usually, you would implement a more fine-grained strategy where ConfD
delivers change information in the sequence required by each application. Have a look at
examples.confd/cdb subscription/iter and

examples.confd/cdb subscription/twophase for details.

Operational Data Providers
There are two primary kinds of operational data:

- Data thatis calculated when requested. ConfD uses callpoints to handle this.
- Data thatis calculated at regular intervals and stored, e.g. in CDR

Operational Data with Callpoints

Most operational data is typically not kept in a database, but read at runtime by
instrumentation functions whenever the operator or management system wants to see
it. This could be for example rapidly changing counters contained inside the managed
objects themselves.

ConfD EVALUATION KICK START GUIDE

The ConfD example examples.confd/intro/5-c_stats demonstrates how to do
this. It allows the operator to see the current contents of the ARP cache of the system.
The YANG data model looks like this:

module arpe {

namespace “http://tail-f.com/ns/example/arpe”;
prefix arpe;

import ietf-inet-types {
prefix inet;

}

import tailf-common {
prefix tailf;

container arpentries {
config false;
tailf:callpoint arpe;
list arpe {
key “ip ifname”;
max-elements 1024;
leaf ip {
type inet:ip-address;
}
leaf ifname {
type string;
}
leaf hwaddr {
type string;
mandatory true;
}
leaf permanent {
type boolean;
mandatory true;
}
leaf published {
type boolean;
mandatory true;

Figure 21: YANG Data-Model for ARP Operational Data
The container arpentries has two important sub-statements:

- config false: YANG statement saying this is not configuration data, i.e. from the
operator’s point of view, it’s read-only data maintained by the agent

+ tail-f:callpoint arpe: Tail-f YANG extension stating a name that the
instrumentation C-code will later register as provider for

The arpe callpoint will invoke callbacks in an external program that have registered as
data provider for “arpe”. There can be several different applications on the same device
that register themselves as providers for different callpoints, and one application can
register multiple callpoints.

PAS)

ConfD EVALUATION KICK START GUIDE

The fundamental callback functions in the Data provider API for a callback are get
next and get elem:

+ get_next: This callbackis invoked repeatedly to find out which keys exist for a
certain list. ConfD will invoke the callback as a means to iterate through all entries
of the list, in this case all “arpe” entries.

+ get_elem: This callback s invoked by ConfD when ConfD needs to read the
actual value of a leaf element.

There are a dozen further callbacks that may make sense to implement. Many callbacks
are optional, but may be provided as an optimization, e.g. to allow ConfD to ask for an
entire list row at once, or quickly find a certain position in a list.

We need to step back here to introduce sessions and transactions. A user session
corresponds directly to an SSH/SSL session from a management station to ConfD. A
user session is associated with the IP address of the management station and the user
name of the user who started the session, independently of which management agent is
involved.

The user session data is always available to all callback functions.

A new transaction is started whenever an agent tries to access some data, e.g. read
operational data. For each transaction two user-defined callbacks are potentially invoked:

.« init: this callback will be invoked when a transaction starts.

- finish: This callback gets invoked at the end of the transaction. This is a good
place to deallocate any local resources for the transaction.

We can now put the puzzle together. The tasks for the main function in our application
are:

1. Initialize the ConfD library

2. Create a control and worker socket: whenever a new session is created (a user
logs in), a request to initialize the sessions arrives from ConfD on the control
socket. All further requests and replies for this session will be sent on the worker

socket created or pointed to by the session init function.

3. Registerthe init, finish, get next and get elem callbacks

g Control Socket
ConfD Worker Socket

Application

2
c
8
2

Figure 22: The control and worker sockets

ConfD EVALUATION KICK START GUIDE

When a user session is started, the init function is called (lazily, i.e. not until needed):

> show arpentries

, init ()
Sl oo Bl CONFD_OK

Figure 23: The control socket init message and response

Application

ie)
c
8
Q

> show arpentries
172.20.31.96 en0 60:C5....

ConfD DB get_elem

Application

libconfd

get_next

Figure 24: The worker socket get_elem and get_next queries

ConfD may be configured to cache operational data provided by callpoints for a certain
time. If an operator accesses such an element, its value will be taken from the cache,
avoiding a call to the data provider.

Storing Operational Data in CDB

An alternative approach to handling operational data is to store operational in CDB
using a write interface. This is a suitable approach for long-lived operational data that is
calculated by the application, e.g. performance data for the last 24 hours. This section is
based on the examples.confd/cdb oper/ifstatus.

Applications can write operational data to CDB. So instead of annotating the operational
data with a callpoint, you state that the operational data should be managed by CDB
(tailf:cdb-oper). In the YANG example below we have a list of interfaces and we
state the counters are CDB operational data:

container interfaces {
list interface {
key name;
max-elements 1024;
leaf name {
type string;

container status {
config false;
tailf:cdb-oper;

container receive {
leaf bytes {
type uinté64;
mandatory true;

Figure 25: CDB Operational Data

ConfD EVALUATION KICK START GUIDE

You can control if the data is just kept in RAM or also made persistent to disk in journal
files (tailf:persistent).

An application can maintain this data with the following steps:

1. cdb connect, cdb start session

2. A series of calls to one or several of the CDB set functions

3. Acallto cdb_end session
It is also possible to load operational data from an XML file into CDB using the function
cdb_ load file.
Configuration Validation
ConfD stores device configuration data. Correct and consistent device configuration
data is truly critical for the correct operations of the device. Misconfiguring a network
device may lead to a situation where the device is no longer connected to the network.
Before committing configuration data, it is crucial to ensure that the new configuration is

reasonable.

Another benefit with a guaranteed validity of the configuration is that application software
which reads the configuration data need not check the validity of the configuration.

ConfD has built-in support for several different types of validation. ConfD automatically
checks that:

- Syntactic validation: the configuration data adheres to the YANG model types,
ranges and structure.

- Integrity constraints: any uniqueness constraints are not violated and no YANG
leafref references are left dangling.

- Model constraints: no YANG must or when statement expressions are violated.
This is a very powerful mechanism whereby it's possible to instruct ConfD to
compute an XPath expression that must always remain true, e.g. value X must be
larger than the sum of all the numbers in the third column of list Y.

- Application validation logic: all applications that registered as validators approve
the new configuration.

- Operator policies: any constraints specified by the operator are not violated, e.g.
operator requires that encryption is always enabled on this device.

Benefit: guaranteed validity
of the configuration is
accomplishded through no
need for application software
that reads the configuration
data to check the validity of
the configuration.

ConfD has built-in support
for several different types of
validation.

ConfD EVALUATION KICK START GUIDE

Let us look at a small example:

container notification {
leaf protocol {
type enumeration {
enum SNMP;
enum SMTP;
enum NETCONEF;
}
mandatory true;
}
leaf smtp-server {
type inet:host;

Figure 26: Validation Example Model

Assume that we want to make sure that if protocol is SMTP the smtp-server setting
must not be empty. This could be done by having a must expression in the YANG model
or referring to a validation-point.

// Using a must expression
container notification {
leaf protocol {
must “. != ‘SMTP’ or ../smtp-server” {
error-message “Must specify smtp-server in order to
use SMTP protocol”;
type enumeration {

// Using a validation-point
container notification {
leaf protocol {
tailf:validate smtp-app;
type enumeration {

Figure 27: Must expression and validation-point

The must expression is of course preferred since it is declarative and model readers will
understand the semantics of the model.

The architecture for implementing validation points is similar to what has been shown for
callpoints previously.
A System Example

In order to see how a little larger system with multiple independent applications could be
organized, have a look at the examples.confd/demo/quagga example.

ConfD EVALUATION KICK START GUIDE

The Bigger Picture of Network
Management

The Operator View

Network devices, virtual appliances and hosts must be configured and monitored. The
management functions shall not assume human users; rather assume that the system

is plugged into an overall automated system. Management functions must be exposed
over user interfaces and management protocols/APIs to allow for automation. SDN and
Network Automation has been an eye-opener for configuration management interfaces
that are programmatic and standardized in contrast to only providing a CLI towards users.

The configuration data in the system must be persistent and be surrounded by guard
rails so that only valid configurations can be entered. Configuration changes should not
assume that users or systems know any built-in sequencing assumptions. Configuration
changes should be done in an ACID transaction, all or nothing should be applied

and manual rollback must be offered. The transactional behavior in combination

with sequencing-independence makes it possible to have automated configuration
applications.

Clear separation of configuration data from operational data is another old truth that is
available in all good CLlIs. It should be possible to get the complete configuration in one
go, or filtered sub-trees thereof. Management interfaces that assume peek and poke of
variables in general are extremely hard to use in any real scenarios.

Devices are installed and used in various scenarios; the above requirements need to be
available over several interfaces:

- NETCONF: the IETF standard for device management allows transaction-safe
programmability

- REST: for simple tasks reading and writing a few configuration and operational
attributes

« SNMP: to support the vast majority of monitoring systems. Let NETCONF take care
of writing configuration and have SNMP (and NETCONF) read operational data

. CLI: any device must support a CLI to power-users. The CLI must be highly user-
friendly

- Web Ul: a modern rich client Web Ul that supports all tasks

FCAPS

Fault-, Configuration-, Auditing-, Performance- and Security Management — these are
the traditional areas of interest in a Network Operations Center (NOC). ConfD provides
interfaces for building management systems encompassing all these aspects of device
management.

ConfD EVALUATION KICK START GUIDE

Network Automation and Software Defined Networking

When operators buy network equipment, typically around 80% of the Total Cost of
Ownership (TCO) over 5 years goes to operational expenses (OPEX), i.e. running the
system. Only 20% is the cost of hardware, capital expense (CAPEX).

Nearly half, 45% according to one study, of the OPEX is spent on configuring and
provisioning services. That makes about one third of the operator’s total spending
go to configuration and provisioning — considerably more than the total spending on
equipment.

Obviously, many operators are looking for ways to drastically reduce the OPEX. The
easiest way is to drastically increase the network automation. Instead of having a cadre of
people doing large parts of the configuration and provisioning work manually or semi-
manually, service provisioning applications could do the work.

This is nothing new. The pressure to automate has been there for many, many years. Still,
the OPEX improvements have been slow to materialize. This is because there have been
a number of obstacles to efficiently implementing service provisioning applications.

Let’s take an example. An operator would like to implement a service activation
application for a new service. The network architects have designed how the service
should work, with tunnels, servers, access control and billing. The necessary equipment
has been installed and set up with a base configuration. Time to write the service
activation application.

The traditional way of doing this has been to design a few web screens where the
operator can fill in the service parameters, and then, when the operator hits the ‘activate’
button, a script is launched. This script inserts the provided parameters in the command
stream and sends out CLI commands to some devices, TL1, SOAP or SNMP PDUs to
others, etc. in some sequence.

The problem here is that the scripts, or device adapters in the more advanced solutions,
quickly get expensive to develop and maintain. In fact, this has been the eternal
headache for the entire networking business. The gap between network management
system and network device has been too wide to efficiently bridge in a single layer.

This is where the Software Defined Networking (SDN) movement comes in. It brings a
three-tier architecture for how network automation applications would communicate with
network devices.

Key ideas in SDN is to separate the automation applications, a.k.a. service applications
from the communications mechanisms employed to reach the devices and to leverage
transactions as a mechanism to keep the complicated issues around error handling away
from the automation applications.

The service application has an idea of what it would like the network setup to be. This
idea needs to be conveyed to all the participating devices. To do so, traditionally it
has been required to encode and serialize the idea in terms of CLI commands, SOAP
messages, SNMP PDUs, etc. Each device then has to parse this serialization, and
implement it.

From this perspective, any requirements that certain parameters must be specified on the
same command line, or must be sent in separate PDUs, or that attribute X must be sent
before attribute Y are just pointless bottlenecks in the flow of ideas from the manager to
device.

Key ideas in SDN

separate the automation
applications, a.k.a. service
applications from the
communications mechanisms
employed to reach the devices
and to leverage transactions
as a mechanism to keep the
complicated issues around
error handling away from the
automation applications.

ConfD EVALUATION KICK START GUIDE

With a transactional interface, the network management application doesn’t need to
bother with this serialization, sequencing or error recovery. With a suitable encoding like
NETCONTF, the whole idea can also be transferred directly, without any need to break it
down into individual commands.

Transaction support, and often times NETCONF and YANG support, are key requirements
to make a device SDN ready.

NCsS

If you would like to understand more about Software Defined Networks (SDN) and the
possible operator gains in efficiency, Tail-f Systems provides another product called
Network Control System, NCS. You can find more information about NCS on the Tail-f
website, www.tail-f.com.

ConfD EVALUATION KICK START GUIDE

Evaluation Checklist

In this section you will find common questions that evaluators are seeking to answer
when examining the ConfD solution. Feel free to use these questions for inspiration when
looking for angles of review.
- Designer objectives: You will do the work, so your efficiency matters.
o Are you able to do everything you need to do?

o How soon can you show a new or updated feature to a customer?

o Is everything you need documented? Can you find what you need in the
documentation, and is the description satisfactory?

o0 Is the product easy to use? Will you be efficient with this product?
- Operator objectives: You are doing all this for the operators. Will they be happy?
o Can operators manage everything using a single management system?
o Are you able to support 2-phase (or 3-phase) transactions?
o Are you able to support network-wide transactions?

o Are you able to support rollbacks, so operators can undo configuration changes
in seconds, if needed?

o Can the kind of configuration validation you need be implemented with
reasonable effort?

o CLI: Will the operator like the command line editing facilities, tab-completion,
?-help, history, search capabilities, output formatting, etc.? Are the prompts and
show output formatted as operators expect? Is the responsiveness good? Can
you tailor the CLI commands, look and feel as you need to?

o WebUI: Will the operator like the graphical appearance, the navigational
aids, screen structure? Are the transactions, rollback, access control features
implemented in a useful way? Can the WebUI be tailored to your needs with
reasonable effort?

o NETCONF: Are all the mandatory and optional parts of NETCONF implemented
well? Is the performance good? Can the operator achieve the network
automation they are looking for?

o SNMP: Are the features operators are looking for implemented well? Is the
performance in line with expectations?

0 REST: Are the operator needs satisfied with the REST interface? Are the design
principles of REST well implemented?

o Error handling: Are the error messages clear, precise and comprehensible by
the average operator?

ConfD EVALUATION KICK START GUIDE

- Architecture: Bad architecture can be very expensive in the long run.

0 Some features are hard to add afterwards, e.g. transactions. Are the necessary
fundamental architectural components in place?

o Are the needs for High Availability, redundancy and database replication satisfied?
o Does the system conform to relevant standards?
o Are the requirements for online/offline software upgrade met?
o Can the system support your distributed system architecture well?
« Performance: Is the system fast and lean enough? Scales well?

o How long does it take to start the system when empty? With a large amount of data
in the database?

o How long time does it take to commit a small or large configuration change? What
about restoring a backup, where most of the data is the same as already in the
database?

o What happens to the execution time of various operations when there is twice as
much data in the system? Or 1,000 times more data? Or 100 concurrent operators?

o How much disk and RAM is needed?
o lsitstable, or are there crashes?

o Canitscale well on parallel CPUs and with multiple parallel workloads, e.g. many
operators in parallel?

- Security: Transparent to authorized users, locking out everybody else.

o Authentication: Can you plug in the authentication sources you need? Can you
build the right sequence of sources to consult?

o Authorization: Do you get the right level or authorization granularity and can you
express the authorization rules you need? Is the performance good?

o Audit trails: Can you configure the system to produce the required audit trail
information?

0 Holes: Have you found any security holes?
o Ease of use: Security can be complicated, is this reasonably easy to use?
- Integration: It must fit with your existing system to be of any use. Does it fit?

o Fit with EMS/NMS/OSS system? What are the cost savings by allowing the
management layer to use transactions?

o Fit with applications within the system?

o Are there integrations with 3rd party applications you use? E.g. Management agent
functionality, operating systems, routing stacks, HA frameworks, ...?

ConfD EVALUATION KICK START GUIDE

Summary

As far as we are told, most ConfD evaluators have come to the conclusion that there are
really no viable product alternatives to ConfD. The only alternative that remains is to roll-
your-own, i.e. it’s a build-vs.-buy decision.

Things to consider when comparing ConfD with developing an in-house solution are
elaborated below. Remember that ConfD has been tested in the field for several years in
nearly 100 deployment scenarios.
- Transaction management taking all components into consideration: data-store,
instrumentation and simultaneous requests over northbound APIs may be

challenging to develop.

- End-user requirements on the CLI: network engineers expect the CLI to behave
like a Cisco or Juniper style. The effort to achieve this is easily under-estimated.

- Supporting several management APIs with same feature set. Customers require
programmatic APIs like NETCONF and REST, monitoring over SNMP, and CLI and
WebUl user interfaces. Efficiently maintaining these across the feature set is non-
trivial.

. Core-features like AAA, auditing, logs and session management are base features
operators simply expect to be there.

- Effort to support framework features like configuration persistence and high-
availability replication typically take several product generations to get right.

Using ConfD, the application team can focus on the unique application features and let
ConfD provide market leading management capabilities.

Further Information

« ConfD’s User Guide: Look in the doc/ directory of the ConfD installation
. ConfD’s man pages: man confd.conf, etc. Look in the man/ directory

- ConfD’s Performance Data sheet: Your support contact can provide you with the
latest version

« ConfD’s examples collection: Look in the examples.confd/ directory, there are
about 80 example applications provided with ConfD

. The Tail-f website: www.tail-f.com

